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Abstract

This document addresses the major challenges of modern networks in terms of flexibility,
scalability, and, above all, low latency in the era of network function virtualization and the
emergence of low latency applications. It presents an optimization model for the placement
and chaining of micro-services, particularly in the context of low latency Service Function
Chains (LL SFCs). This model follows technological considerations of the MOSAICO project
regarding packet forwarding strategy, adopting the L4S approach. The document also ex-
plores cohabitation strategies for LL and BE (Best Effort) SFCs, proposes a heuristic ap-
proach as a fast and realistic alternative solution, and presents specific use cases illustrating
practical applications of these concepts. Finally, it analyzes the performance and efficiency
of these models through various evaluation scenarios, offering valuable insights for future
developments in this field.
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Chapter 1

Introduction

In the age of digitization and rapid IT evolution, modern networks face major challenges in terms of flexibility,
scalability and, above all, low latency. Part of the answer to these challenges lies in optimal placement and micro-
service chain management, particularly in the context of low-latency (LL) Service Function Chains (SFCs). While
these concepts are essential for ensuring optimal network performance, their practical implementation requires a
systematic, well-designed approach. This delivrable of the MOSAICO project delves into this issue, presenting an
optimisation model for micro-service placement and chaining, as well as an in-depth exploration of cohabitation
strategies for LL and BE SFCs which is a straight follow-up of technological consideration of the project regarding
the packet forwarding strategy which considers the L4S [1] approach. In addition, a heuristic approach is proposed,
offering an alternative, rapid and realistic solution to the problem. We also present specific use cases for placement
and the SFC chain within the framework of the MOSAICO project, illustrating practical applications of these
concepts. Through a series of evaluation scenarios, we analyze the performance and efficiency of these models,
offering valuable insights for future developments in this field.
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Chapter 2

Related Work

The rapid transformation of network architectures and the emergence of new performance requirements have led
to a significant evolution in approaches to managing virtual network functions (VNFs). These developments have
been marked by the growing adoption VNF parallelization and the micro-services approach among others. Each
of these architectural optimisations aims to optimize network latency, flexibility and efficiency. In this section,
we explore the relevant previous work that laid the foundations for these advances. We will look in detail at the
different strategies adopted for VNF placement and routing, the exact and approximate methods used to solve these
problems, and how parallelization and micro-services have been integrated to further improve performance.

2.1 VNF Placement and Routing

2.1.1 Exact resolution

Placement and Routing of VNF (VNF-PR) is a problem that has attracted a lot of attention for a decade [2]. It
covers two objectives which are: (1) the placement of VNF on network nodes, and (2) their chaining to satisfy
the service requests while respecting various associated constraints. In [3], Sun et al. assess the richness of the
field by leveraging a taxonomy which classifies existing approaches according to the type of orchestration problem,
the objective function and finally the resolution method. In most of the related literature, the formulation of the
VNF-PR problem is achieved through an Integer Linear Program (ILP) or a Mixed ILP (MILP). Concerning the
resolution of the problem, some proposals use a solver such as CPLEX [4, 5], while some others develop a heuristic
algorithm [6, 7] or a meta-heuristic [8]. In [4], [9] the authors consider the placement and routing problem of VNF
with only one type of VNF for all services thus making it restricted.

In [10], Luizelli et al. deal with the VNF-PR issue by proposing a realistic ILP model. In this work, the latency
minimization is translated into a constraint instead of the objective function which is rather formulated with the aim
of minimizing the number of VNF instances. The authors break down the problem into sub-problems and develop a
Variable Neighborhood Search algorithm that tries to find a near-optimal solution for each sub-problem. Similarly,
in [11], the authors keep the same model but they use a meta-heuristic algorithm which is more time-efficient. In
[12], the authors minimize the number of activated nodes instead of VNF instances, which shows the relevance of
the cost metric choice in the model formulation. Finally, in [13], Askari et al. propose an algorithm which deploys
SFC in a metropolitan network context with the objective of minimizing the number of nodes used. Unlike previous
papers, the authors propose an algorithm that allows deployment in a dynamic rather than static environment.

2.1.2 Approximate resolution

The VNF placement and chaining problem is mainly tackled by two strategies. Exact methods, like the Simplex
algorithm [14], offer precise results but require long computation times. By contrast, approximate methods, based
on heuristics or metaheuristics, offer near-optimal quicker solutions. Despite potential sub-optimality, the faster
results of approximate methods make them often preferred in practice.

Existing heuristics for VNF placement and chaining often break down the problem into more manageable steps.
For example, [3] tackles it by modeling the problem as a multi-tiered graph and then utilizing the Viterbi algorithm
[15] to deploy VNF. However, these methods face a significant challenge: the dynamic parallelization of VNF, which
is unknown before deployment, complicates the creation of a multi-level graph. By contrast, Askari et al. present
in [13] a shared-use approach. Their heuristic examines each VNF placement of existing instances, chooses the
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closest to source and destination, or, if absent, calculates the shortest path and deploys a new one. This method
may however lead to non-optimal solutions, increasing the traffic latency.

Besides, most studies propose a per SFC approach to deploy VNF on the shortest path. Notably, [16, 17] follow
this idea by using Dijkstra’s algorithm to calculate the shortest path. In cases where the deployment is not possible
on some nodes, they propose to recalculate another one and attempt the deployment again. Similarly, Hirewe et
al. [16] suggest to remove the most overloaded node, while Gadre et al. [17] suggest to remove the highest latency
arc before recalculating the new shortest path. However, the latter may not necessarily be the next shortest path,
standing for a limitation of this approach. Several optimal methods for k shortest path calculation exist too: the
modified Dijkstra algorithm, A*, Bellman-Ford-Moore, and Yen or Eppstein algorithms [18, 19]. The latter extends
the Dijkstra algorithm and stands out by its lower complexity. It identifies the k shortest paths in a non-negative
graph using a priority queue to store them. It first calculates the shortest paths from each node to the destination
node using Dijkstra, and then, proposes a new representation of the original graph which facilitates efficient traversal
either on the shortest path with zero-cost or via an auxiliary node, with the cost corresponding to the forwarding
latency.

2.2 VNF Parallelization

In order to optimise the latency of SFC, some contributions propose to parallelize the execution of VNF. [20]
develops a pioneer work with an algorithm allowing to carry out a graph parallelizing the whole of the parallelizable
VNF. To that aim, the algorithm is based on a table which states whether or not two network functions are
parallelizable, given that the processing carried out on the packets are not related to each other. The authors
propose to implement parallelism of VNF for those deployed on the same node as well as different nodes, standing
for internal and external parallelism. Nevertheless, the parallelism on different nodes can controversially degrade
the SFC latency as it requires to copy and merge packets, whereas within the same node, the VNF can use a shared
memory, as proposed by DPDK [21]. Subsequently, among the most relevant proposals, [22] proposes to solely
implement internal parallelism of NF with the condition that all SFC are placed on the same node. In order to
limit the copy/merge time, the authors propose two techniques: (1) only copy the header when some processing
is performed on it, and (2) use the shared memory when the processed packet fields are different. In a similar
way to the former [20, 22] also proposes a parallelization allowing to state which VNF can be parallelized. In [23]
the authors propose a parallelization approach that addresses the weaknesses of [20] and [22] by parallelizing VNF
placed on the same node without any condition on the whole SFC thus preventing the penalty latency in copy/merge
on different nodes. Besides, it also allows better agility since the parallelism is decided after deployment. Finally
in [24] the authors present an approach that manages the internal and external parallelism of NF to minimize the
latency of deployed SFC. The authors present a two-step approach to (i) compute the set of possible parallelism
configurations for a service chain and select the one that respects the order and parallelism between NF and (ii)
choose, according to the infrastructure configuration, the best deployable one. Some tests concluded that full
parallelism is not always optimal in terms of latency while partial parallelism allows a latency gain of up to 25% as
compared to full deployment.

2.3 Micro-services: Architectures and Orchestration

For a couple of years, the benefits of micro-services have been demonstrated [25] as an alternative to standard
monolithic VNF which exhibit three important limits: the overlapping of functionalities, the loss of CPU cycles
and the lack of flexibility in scaling. Following this idea, several micro-services architectures have been designed
and implemented, such as Microboxes [26] and Openbox [27], all bringing specific performance enhancements which
mainly leverage lightweight virtualization with containers and zero-copy of packets with DPDK[21]. In [28], the
authors study the impact of deploying micro-services on one or more containers, and they observe a slight increase
in latency in the latter situation due to the packet flow between containers. In [29], the authors present the
advantages and disadvantages of using micro-services and they assess their interest in terms of execution latency
as compared to the monolithic approach by deploying micro-services on different CPUs. The authors propose an
AI-based architecture to decide the reuse, creation or duplication of micro-services during deployment.

Concerning the placement and chaining of micro-services, in [30], the authors address the intra- and inter-server
connectivity and their impact on the communication between micro-services that should be well-performing to
minimize end-to-end latency. They propose an ILP placement model whose objective function is to minimize the
latency delay between the different micro-services. They also propose some constraints specific to the end-to-end
latency as well as the NFV infrastructure. In [31], the authors also develop a placement solution that limits end-to-
end latency and minimizes the exchange of messages between VNF. In order to reduce latency, the authors focus
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on minimizing the communication delay between the different VNF and underlying micro-services and therefore,
they create network micro-service bundles called Affinity Aggregates which are a set of VNF or micro-services
exhibiting heavy communication and should therefore be deployed in a close way. [32] exploits the advantages of
micro-services (re-usability, light weightiness, and better scaling) to overcome the performance degradation that
NFV can generate with monolithic NF. It proposes MicroNF, a framework based on three axes: (1) a reconstruction
of SFC to re-factor micro-services when possible; (2) a micro-services placement which tries to consolidate them on
the same node; and (3) a scaling approach that attempts to balance the load between the network nodes to avoid
duplicating micro-service instances and thus limit communications.

Mutualization consists in grouping two or more identical micro-services belonging to the same SFC in a single
one. It makes it possible, first, to shorten the length of the SFC and consequently its latency, and second to save
memory and CPU resources. Such an approach has been studied in [32, 33] as part of the functional decomposition
of VNFs into micro-services. These research works particularly show that the mutualization of two identical micro-
services is not systematic. Indeed, it requires checking the overall set of micro-services from the original SFC to be
sure that the processing of packet data will not be affected. This is achieved thanks to a mutualization table as
proposed by [32] which focuses on this particular enhancement. Besides, [33] also proposes a framework supporting
micro-services that includes an algorithm allowing the mutualization of micro-services. However, it does not propose
any model nor algorithm for the placement and chaining of micro-services.

Through this survey of related literature, we observe that a consequent work has been carried out in order to
minimize the latency of SFC, whether it relies on the routing and placement modeling [4, 9, 10, 11, 12, 2], VNF
parallelism [20, 22, 23] or micro-services decomposition and mutualization [30, 25, 33]. However, these different
contributions have been considered in an isolated way, which can lead to sub-optimal latency. Indeed, as highlighted
in [32], the micro-services approach, implemented without mutualization, exhibits a negative impact on the overall
SFC latency. Similarly, parallelism, when used in a non-optimal way, can increase latency instead of reducing
it [23], and to the best of our knowledge, it has only been considered for monolithic VNF. Therefore, as a first
contribution of this paper, we propose a comprehensive optimization model that specifically provides a robust and
flexible micro-services orchestration using both mutualization and optimized parallelism based on the infrastructure
configuration.

D3.1: Optimisation of Micro-services Placement and Chaining for Low Latency Services
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Chapter 3

Optimisation Models

In this section, we present the micro-services placement and chaining orchestration problem we address and then,
we develop its mathematical formulation. Wishing to optimise the SFC latency and benefit from the agility offered
by micro-services, we propose an approach allowing to: (1) mutualize micro-services through a pre-processing
algorithm; (2) place and chain micro-services through a MILP that also (3) efficiently manages parallelization
of micro-services according to the infrastructure setup (i.e. number of nodes and links as well as their available
resources).

3.1 Problem Statement

Definition: The micro-services placement and routing problem we study is defined on a network graph G = (N,L),
where N is a set of nodes and L a set of links between nodes. Q is a set of SFC requests, with each request q ∈ Q
being characterized by a source Sq, a destination Dq, a nominal bandwidth Bq statistically representative for request
q, a maximum execution latency Λq and a set of micro-services of different types to be traversed by an edge flow.
The micro-services placement and chaining optimization problem consists in finding:

• The placement of micro-services over network nodes;

• The assignment of requests to micro-services already placed;

• The chaining for each request,

subject to:

• Memory node capacity constraints;

• Micro-services forwarding and execution latency constraints;

• Parallelism execution constraints.

3.1.1 Hypothesis

The optimization objective chosen in our work is, for each SFC to deploy, the minimization of the gap between
the actual latency as provided by the placement and routing solution, and that given in the SFC specification. To
provide an appropriate solution, we formulate two classes of hypotheses:

3.1.2 Essential hypotheses for the model

h1. The available nodes have no usage cost but the available resources expressed in terms of CPU and memory
are limited;

h2. The available links have no usage cost but the flow rate on each one is limited;

h3. The processing time of mutualized micro-services is negligible in comparison to that of non-mutualized micro-
services, as the time overhead from mutualization is considered insignificant due to identical executed code in
both situations.

D3.1: Optimisation of Micro-services Placement and Chaining for Low Latency Services
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3.1.3 Releasable hypotheses without loss of generality

h4. The memory required for the deployment of micro-services is similar for all micro-services;

h5. Sharing the usage of micro-services between different SFC is not allowed;

h6. A shared micro-service occupies the same memory space as a non-mutualized micro-service. In our approach,
we assume that the size of micro-services code is much larger than their configuration, so merging the config-
uration of mutualized micro-services does not impact their memory occupation.

3.2 Overall Approach

Our approach is developed with the aim of taking advantage of the micro-service features in order to reduce the
end-to-end latency of SFC. It consists in two parts: (1) a pre-processing algorithm that performs the mutualization,
a pre-parallelization on the set of SFC, and provides the Q set and parallelism parameters to be used in our model,
and (2) a MILP translating the problem of placement and chaining of micro-services, which is solved by taking into
consideration the parallelism parameters among other constraints.

3.2.1 SFC Pre-processing

The pre-processing phase needs two-dimensional parallelism and mutualization tables as inputs, which indicate
whether two micro-services are mutualizable or parallelizable as developed in the literature [32, 23]. To understand
the pre-processing, let us consider the example depicted in Figure 3.1, where a request q is made up of an original
SCF containing five sequential micro-services. Supposing that the tables indicate that micro-services 1 and 5 can
be mutualized and micro-services 2, 3 and 4 can be parallelized, our algorithm builds a new SFC made up of four
micro-services as depicted in the second part of Figure 3.1. Note that depending on the infrastructure constraints,
the MILP of the second phase may not necessarily lead to the placement and execution of micro-services 2, 3 and
4 in parallel, even if this was allowed in the pre-processing phase.

3.2.2 Managing Parallelized Micro-services

The pre-processed SFC are provided to the model with some parallelism parameters to carry out a placement
and chaining. The aim here is to minimize the sum of the gaps between the required and achieved latency after
deployment, for each SFC while taking into account the infrastructure setup. The key-point stands in the choice of
service parallelization which is managed by the model through the generation of forks and mergers of two types:

• internal forking: a packet is duplicated within a node to reach a set of further parallelized micro-services
located on the same node. This kind of internal parallelism does not require copying data, nor merging, since,
as reviewed in sub-section 2.2, technologies such as DPDK allow shared memory to be used.

• external forking: a packet outgoing from one node is duplicated to subsequent NF located on two or more
successor nodes. Such external parallelism implies a copy of the packets to be sent to the different micro-
services deployed on different nodes and then a merging of the resulting packets too.

The latter mechanism leads us to add a latency cost for the external fork corresponding to the copy and merge
time, unlike the internal fork. The originality of the model lies then in the fact that depending on its configuration,
it decides which micro-services to parallelize internally, externally or not at all. However, this complicates the
computation of the induced latency. Indeed, when the model defines a placement, it also has to indicate whether
the micro-services on the nodes (if parallelizable) are visited consecutively or not. In order to know which micro-
services are running in parallel within a node, we use groups that gather them together.

To illustrate this principle, the example in Figure 3.2 shows three different possible deployments for request q,
as introduced in Figure 3.1. The first one (A) does not parallelize any micro-services: although two are on the
same node (i.e. micro-services 2 and 3), they do not belong to the same group. In this case, the resulting SFC
is composed of a single group (g1) on nodes B and D, and two groups (g1 and g2) on node E. This situation is
equivalent to a deployment without parallelism as presented in [10, 11, 12]. The second deployment (B) proposes
an external parallelization of micro-services 2 and 3 on two different nodes, thus a single group (g1) per node.
This induces an additional latency corresponding to the copying and merging operations. Finally, deployment (C)
parallelizes micro-services 2, 3 and 4 by performing internal and external parallelism. This situation is equivalent
to the deployment scenarios presented in [22]. This time, a single group (g1) is assigned to each of nodes B, C and
D. In this case also, a fork cost is counted because the latter is external. Beyond, this SFC example and underlying
infrastructure may lead to other possibilities, actually depending on the memory capacities of each node.

D3.1: Optimisation of Micro-services Placement and Chaining for Low Latency Services
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Figure 3.1: Pre-processing example

Figure 3.2: A deployment example

3.3 Mathematical Formulation

Table 3.1 provides the set of notations used for the formulation of our MILP formalizing the problem of placement
and chaining of micro-services.

In this model, we define seven decision variables. xnfq are used to decide which micro-service f ∈ F of request
q ∈ Q should be placed on which node n ∈ N . ynfq allow to know whether micro-service f ∈ F is placed on the
nodes preceding n ∈ N (n included) on the path related to request q ∈ Q. Variables an1n2q are used to decide
whether the link between nodes n1 and n2 from set N is used for service request q ∈ Q, all links being oriented in
this model. Having allowed the forks, we introduce variables ln1n2qh to decide whether the link between nodes n1

and n2 from set N is used within path h ∈ Fq of the chaining of request q ∈ Q. This allows to define the set of
possible paths for the chaining of each SFC. Variables bfnqh indicate the existence of a fork on node n ∈ N relative
to a request q ∈ Q and path h ∈ Fq. Then, the latency of request q ∈ Q finishing its process at node n ∈ N is
equal to the greatest latency of the different relative paths. This requires to define a longer path, managing the
notion of group as introduced in section 3.2.2. A group g ∈ Fq is composed of a set of a single or several parallelized
micro-services assigned to node n ∈ N for request q ∈ Q and for path h ∈ Fq. Since all the micro-services belonging
to the same group run in parallel, we use variable γnqfg to indicate whether micro-service f ∈ F related to request
q ∈ Q is placed in group g ∈ Fq attached to node n ∈ N , and variable σnqgh which corresponds to the latency of
group g ∈ Fq relative to request q ∈ Q and path h ∈ Fq. Finally, in order to minimize the overall gap between the
required and actual latency, we introduce variable rq which represents the latency gap for each request q ∈ Q.

This leads to the following model, consisting, for each SFC, in deploying the minimization of the gap between
the actual latency as provided by the placement and routing solution, and that given in the SFC specification,
subject to the two dozen of constraints that we describe subsequently. The objective function (3.1) represents in its
first term the minimization of the sum of the latencies delay, rq on the set SFC q ∈ Q. The second term represents
the minimization of the decision variables ynf q and bfnqh in order to facilitate the understanding of the result. For
example, if ynf q is not constrained, it may hold a random value which may induce a wrong interpretation of the
result. Also the variable pnf q is an intermediate variable allowing to facilitate the formulation of the model.

min
∑
q∈Q

rq +
∑
n∈N

∑
q∈Q

∑
f∈Fq

∑
h∈Fq

ynf q + bfnqh + pnf q (3.1)

Constraints (3.2) and (3.3) guarantee that if there is an incoming flow in a node for a certain service request
q, and the node is neither a source nor a destination node, an outgoing flow must exist and vice-versa. Unlike a
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Sets
N Nodes

L in N ×N Links
Q Service requests
F Micro-services

Micro-service parameters
λf Execution latency

Rmf CPU resource requirements
Demand parameters

Sq Source
Dq Destination
Λq Latency
Bq Throughput

Fq in Q Micro-services composition
Infrastructure parameters

Mn Node memory
Rn Node CPU resource

∆n1n2
Link latency

Dan1n2
Link flow rate

CB Bifurcation cost
Parallelism parameters

Tf1f2 Parallelism possibility
Pf1f2q Parallelism possibility into service request

Model parameters
m Constant value guaranteeing compliance with constraints

Binary variables
xnfq = 1 if function f is placed on node n for request q
ynfq = 1 if function f is placed on node n or before for request q
an1n2q = 1 if link (n1, n2) is activated for request q
ln1n2qh = 1 if link (n1, n2) is activated for request q for path h
γnqgf = 1 if function f related to request q placed on node n belongs to group g
bfnqh = 1 if there is a fork on node n for request q and for path h
pnfq Intermediate variable

Continuous non-negative variables
rq Gaps between the required and achieved latency for LL request q after deployment

σnqgh Latency of group g related to request q, node n and path h
onq Order of node n in the chaining of request q

Table 3.1: Notation table
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standard chaining problem, outgoing flows can be greater or lower than incoming flows and vice-versa, due to the
fork-merge managed by the model.

∑
e∈N

aenq ≥ ansq ∀q ∈ Q,n, s ∈ N ̸= Sq, Dq (3.2)∑
s∈N

ansq ≥ aenq ∀q ∈ Q,n, e ∈ N ̸= Sq, Dq (3.3)

In order to avoid cycles in the chain and to force it to be elementary, constraints (3.4) ensure that each node
has an order in the chain and that this order is respected.

on1q ≥ on2q + an2n1q −m(1− an2n1q) ∀n1, n2 ∈ N (3.4)

The set of constraints (3.5) to (3.10) allow to set variables ynfq to 1 in case function f is placed on node n or
before for request q.

ynf q ≥ xnf q ∀n ∈ N, f ∈ F, q ∈ Q (3.5)

an1n2q − 1 + xn1f q − xn2f q ≤ yn2f q ∀n1, n2 ∈ N, ∀q ∈ Q,∀f ∈ Fq (3.6)

yn1f q − 1 + an1n2q ≤ yn2f q ∀n1, n2 ∈ N, ∀q ∈ Q,∀f ∈ Fq (3.7)∑
n1∈N

yn1f q + an1nq ≤ pnf q∀n ∈ N, ∀q ∈ Q,∀f ∈ Fq (3.8)

xnf q ≤ pnf q ∀n ∈ N, ∀q ∈ Q,∀f ∈ Fq (3.9)

ynf q ≤ pnf q ∀n ∈ N, ∀q ∈ Q,∀f ∈ Fq (3.10)

More specifically, constraints (3.5) allow to set variables ynfq to 1 if xnfq equal to 1. Constraints (3.6) aim at
setting variables yn2fq to 1 if the relative function f is placed on node n1, preceding node n2 and concerning request
q. Constraints (3.7) allow to set variables yn2fq to 1 if yn1fq equal to 1 and if n1 is preceding node n2 concerning
request q. The set of constraints (3.8), (3.9) and (3.10) allow to set variables ynf q to 0 if function f is not placed
on node n and it is not placed on any of the preceding nodes of n as well as their respective preceding nodes.

Constraints (3.11) ensure that all micro-services related to each request q are placed on the destination node or
before on the chain related to q.

ynf q ≥ yDq f q ∀q ∈ Q,∀f ∈ Fq,∀n ∈ N (3.11)

Constraints (3.12) and (3.13) guarantee that if two micro-services are placed in the same group, they can
be processed in parallel, and this in two ways: the first states that the two micro-services can be technically
parallelizable, the second states that, in the SFC, the two micro-services are parallelizable, i.e. none of them is in
the precedence list of the other.

γnqgf1 + γnqgf2 ≤ Tf1f2 + 1 ∀n ∈ N, ∀q ∈ Q,∀g, f1, f2 ∈ Fq (3.12)

γnqgf1 + γnqgf2 ≤ Pf1f2q + 1 ∀n ∈ N, ∀q ∈ Q,∀g, f1, f2 ∈ Fq (3.13)

Constraints (3.14) ensure that variables σnqgh are greater than or equal to the execution latency of all the
micro-services belonging to group g on path h.

σnqgh ≥ λf (γnqgf + lnn2qh − 1) ∀q ∈ Q, f ∈ Fq,∀n, n2 ∈ N, ∀h, g ∈ Fq (3.14)

Constraints (3.15) allow variables rq to be equal to the gaps between the required and achieved latency for
request q which do not respect their latency specification.∑

n1∈N

∑
n2∈N

ln1n2qh ∗∆n1n2
+

∑
n∈N

∑
g∈Fq

σnqgh +
∑
n∈N

bfn ∗ CB − Λq ≤ rq ∀q ∈ Q,∀h ∈ Fq (3.15)

Constraints (3.16) and (3.17) respectively ensure that the CPU resources and the available flow rate on each
link are respected for each node.

∑
q∈Q

∑
f∈Fq

xnfq ∗Rmf ≤ Rn ∀n ∈ N (3.16)

∑
q∈Q

∑
f∈Fq

an1n2q ∗Dbq ≤ Dan1n2 ∀n1, n2 ∈ N (3.17)
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Finally, the model includes the following types of variables.

xnfq ∈ {0, 1} ∀n ∈ N, f ∈ F, q ∈ Q (3.18)

ynfq ∈ {0, 1} ∀n ∈ N, f ∈ F, q ∈ Q (3.19)

an1n2q ∈ {0, 1} ∀n1, n2 ∈ N, q ∈ Q (3.20)

ln1n2qh ∈ {0, 1} ∀n1, n2 ∈ N, q ∈ Q, h ∈ Fq (3.21)

γnqfg ∈ {0, 1} ∀n ∈ N, q ∈ Q, f ∈ F, g ∈ Fq (3.22)

bfnqh ∈ {0, 1} ∀n ∈ N, q ∈ Q, h ∈ Fq (3.23)

pnfq ∈ {0, 1} ∀n ∈ N, q ∈ Q, f ∈ F (3.24)

rq ≥ 0 ∀q ∈ Q (3.25)

σnqgh ≥ 0 n ∈ N, q ∈ Q, g ∈ Fq, h ∈ Fq (3.26)

onq ≥ 0 n ∈ N, q ∈ Q (3.27)

Besides, the model also includes some additional constraints, not detailed here due to space constraints. How-
ever, for reproducibility purposes, a comprehensive description of the model, including all constraints, is available
in Deliverable D2.3 of the supporting project, at: https://www.mosaico-project.org/outcomes. Briefly, these con-
straints ensure that: (a) the placement of all the micro-services related to each request is achieved; (b) the chaining
passes through the necessary micro-services; (c) the memory capacity of each node is respected; (d) each chaining
starts with the source node and ends with the destination node related to each request; (e) variables bfnqh are
activated when an external fork takes place on node n for request q and on the path h ; (f) the links related to each
path h are only active if they are active in the request chain; (g) the flows for each path are respected; (h) each
path related to a request q passes through at least one micro-service related to its request; (i) each deployed micro-
service belongs to a group. One can lastly notice that the constraints of nodes ordering respect and micro-services
ordering respect were inspired by the work carried out in [4, 34]. This studied problem is NP-complete. Indeed, by
considering the particular case with only one type of VNF, made of a single micro-service without parallelism nor
mutualization option, it reduces to the classical VNF placement problem that is already NP-Complete [35].

3.4 Toward Fair Sharing Strategies of LL and BE SFC

Although the expansion of LL applications requires dedicated orchestration models such as the one we proposed
in the previous section, there are still BE traffic for current classic applications (e.g. mail, web, etc.) and the
Internet stands for the backbone infrastructure which must ensure the coexistence of these two classes regarding
both their traffic forwarding by network nodes (i.e. switches and routers) and processing by NF in SFC. In this
section, we propose three cohabitation strategies for packet processing in SFC, inspired by the L4S approach for
packet forwarding in infrastructure-level networks. These strategies differ in their business objectives and prioritize
one class over the other using a dedicated Ω parameter, analogous to the L4S’s coupling factor k between respective
AQM. While we initially identified sixteen cohabitation strategies for LL and BE SFC, only those presented in this
paper are relevant for a realistic cohabitation scenario. One can notice that enforcing a cohabitation strategy is
only necessary in the case of an overloaded network infrastructure. When resources are sufficient for deploying all
LL and BE SFC, the question of cohabitation is irrelevant, as all SFC can be optimally deployed. The cohabitation
strategies we propose here extend our model with important features, including (1) taking into account BE SFC
with no strict latency constraints, (2) proposing partial deployment solutions when the infrastructure is insufficient
for a complete deployment, and (3) ensuring a strict latency compliance for deployed LL SFC in certain situations.

3.4.1 Related work

SFC can be divided into two classes: LL SFC with strict latency requirements, and BE SFC with no strict latency
constraints. The cohabitation of these two SFC classes has emerged as an important research area. From an
architectural perspective, two approaches have been proposed: the slicing approach and the L4S one. The slicing
approach [36] proposes to leverage network isolation to allocate distinct resources to different service classes, thus
preventing an overload in BE traffic from impacting LL ones. However, slicing may not allow the most efficient
resource usage of a virtualized infrastructure and a fair sharing of these resources between the different classes. The
L4S architecture [1] proposes a solution to the packet forwarding operation that ensures a fair sharing of resources
while respecting traffic features. In L4S, the respective AQM (Active Queue Management) of LL and BE traffic are
coupled to ensure that both classes adapt their sending rate to mitigate congestion, thus preventing the BE traffic
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from being starved while the LL one is preserved [37, 38, 39]. The L4S approach contrasts with the state-of-the-art
diffserv approach [40] which fully isolates traffic classes for the sole forwarding purpose too.

In the field of placement and chaining, several studies address both BE and LL classes of SFC through math-
ematical formulations or heuristic algorithms. P. Cappanera et al. [41] propose a MILP model for the placement
and chaining of SFC, taking into account different levels of prioritization. This priority is defined by a variable
introduced in the objective function, allowing the model to balance the requirements of various SFC according to
their importance. However, the main limitation of this work relies in its unique approach to coexistence, prioritizing
the LL SFC deployment without fully considering the potential latency impact on other services. As such, it could
benefit from further investigation especially in the trade-offs between different service classes. Following the same
idea and limits, F. Behrooz et al. [42] address the issue of optimizing the deployment of dynamic SFC by considering
the prioritization of different service requests. Some SFC known as emergency are treated as a priority and must
respect throughput and latency constraints, while BE SFC, with lower priority, use the remaining resources. The
authors develop a resolution heuristic based on a combinatorial optimization resource scheduling algorithm, which
considers the network capacity and topology constraints to enhance overall performance. Besides, M. Amir et al.
[43] address the management of LL and BE service classes in their placement and chaining algorithm, assigning
higher priority to LL SFC and treating them preferentially. By giving precedence to LL SFC, their approach aims
to ensure the quality of service for latency-sensitive applications. However, the weakness of this approach is that BE
SFC are deployed in the remaining infrastructure capacities, potentially resulting in sub-optimal resource allocation
and thus augmenting the degraded performance for traffic forwarding and the overall infrastructure efficiency.

3.4.2 Analysis and Selection of Cohabitation Strategies

The business objective supported by the cohabitation of two service classes can be defined by two criteria abstractly
named deployment and latency. The first one specifies whether or not the deployment of all the SFC of a given class
is mandatory. The second one is specific to LL and BE classes of traffic. For LL SFC, it determines whether they
must strictly respect the required latency, or whether the gap between the required latency and the actual latency
must be minimized. For BE SFC, it determines whether their latency must be minimized still, or not, given that
BE traffic is not subject to prescribed latency constraints. The combination of these two criteria for the LL and
BE classes generates sixteen possible cohabitation strategies. Among them, we exclude a first set which proves to
be infeasible or not plausible, as for example, a strategy setting mandatory deployment of all SFC for both classes
which is not feasible in an overloaded infrastructure. Similarly, we also eliminate the strategy where LL are fully
deployed and latency constraints are strictly respected, since this approach does not act as an actual cohabitation
but rather the sole deployment of BE on the remaining space. At the end, only three plausible strategies remain,
representing specific needs and contexts, and for each of them we developed a dedicated objective function and
modified some constraints from our initial placement and chaining model. Table 3.2 summarises them, in which: (i)
BE latency is always minimized, because even if no prescribed latency bound is specified explicitly for this class of
SFC, the lower the latency the better the service quality for consumers, and (ii) BE deployment is always partial.
Indeed, considering the case of a total deployment of BE SFC, the infrastructure resources may be insufficient, and,
degrading a LL service availability through a partial deployment of its SFC while BE SFC are all deployed, does
not appear as a plausible scenario in our context.

Strategy Parameters LL BE

Equitable
Latency Minimise Minimise
Deployment Partial Partial

LatRes
Latency Strict Minimise
Deployment Partial Partial

LLDep
Latency Minimise Minimise
Deployment Total Partial

Table 3.2: Cohabitation strategies for LL and BE SFC

3.4.3 MILP Model Evolutions

Having a mandatory deployment of LL or BE SFC, or constraining the latency compliance for LL SFC requires
several modifications in our model which are implemented in the objective function and in some constraints. Besides,
considering a novel BE SFC class requires some ground modifications which are common to the three strategies we
consider. As such, we add the variables and parameters summarized in Table 3.3. Herein, clq is a variable related
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Demand parameters
clq Class of SFC : LL or BE
nLL Number of LL SFC
nBE Number of BE SFC
SLR Sum of prescribed latency for LL SFC
laBE Sum of lengths for BE SFC

Binary variables
brq = 1 if SFC q is deployed

Continuous non-negative variables
rbq Latency of BE request q

Table 3.3: Notation table for cohabitations strategies

to each SFC q which indicates the class it belongs to (i.e. BE or LL) and variable brq indicates if SFC q is deployed
or not.

1. Fair Sharing Strategy (Equitable)
This strategy places both classes of services on the same level and the Ω parameter acts as the exclusive
way to prioritize one class over the other at the placement stage. Unlike the basic model, it does not require
fully deployed SFC and it minimises the latency gap of LL and the total latency of BE. Consequently, the
objective function is the sum of four components: the number of deployed LL SFC, the number of deployed
BE SFC, the latency gap of LL SFC and the latency of BE SFC. These components exhibiting different scales,
a normalization is applied.

min(
∑
q∈Q

rq/SLR+ (nLL−
∑
q∈Q

(brq ∗ clq))/nLL) ∗Ω+ (
∑
q∈Q

rbq/laBE + (nBE −
∑
q∈Q

(brq ∗ (1− clq)))/nBE)

∗ (1− Ω) +
∑
n∈N

∑
q∈Q

∑
f∈Fq

∑
h∈Fq

ynf q + bfnqh + pnf q (3.28)

The first line of objective function (3.28) represents the latency gap of LL SFC plus the number of LL SFC
that are not deployed multiplied by Ω. The second line exhibits the sum of BE SFC latency plus the number
of non-deployed BE SFC multiplied by (1− Ω). Regarding the constraint modifications of our initial model,
we only relax here the constraint which forces all LL SFC to be deployed.

2. Latency Respect Strategy (LatRes)
This second strategy ensures that the latency of deployed LL SFC is respected and that the latency of BE
SFC is as low as possible, without any restriction on the deployment. Concerning the use of resources, with
equal Ω weight, LL SFC will be prioritized because their deployment requires the full respect of latency. This
strategy is interesting when the LL SFC do not support any latency penalty such as for industrial control
applications. Consequently, the objective function simply maximises the number of deployed LL and BE SFC
and it minimises the latency of BE SFC.

min((nLL−
∑
q∈Q

(brq ∗ clq))/nLL) ∗ Ω+ (
∑
q∈Q

rbq/laBE + (nBE −
∑
q∈Q

(brq ∗ (1− clq)))/nBE)

∗ (1− Ω) +
∑
n∈N

∑
q∈Q

∑
f∈Fq

∑
h∈Fq

ynf q + bfnqh + pnf q (3.29)

The first line of objective function (3.29) represents the number of LL SFC that are not deployed multiplied
by Ω. The second line is the sum of the latency of the BE SFC plus the number of not deployed BE SFC
multiplied by (1− Ω). This strategy needs to add a new constraint (3.30) which forces all deployed LL SFC
to respect the required latency.

rq ∗ clq = 0 ∀q ∈ Q (3.30)
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3. LL Deployment Strategy (LLDep)

This last strategy guarantees the full deployment of LL SFC, subject to sufficient infrastructure resources.
The latency of LL and BE SFC, and the number of deployed BE SFC depend here on the Ω weight which
gives priority to the deployment of all LL SFC, without guaranteeing their latency. This corresponds to the
case where the deployment of LL SFC is mandatory. The objective function must therefore minimise the
latency gap of LL SFC, the number of deployed BE SFC and their latency.

min(
∑
q∈Q

rq/slr) ∗ Ω+ (
∑
q∈Q

rBq/loBE + (nBE −
∑
q∈Q

(brq ∗ (1− clq)))/nBE)

∗ (1− Ω) +
∑
n∈N

∑
q∈Q

∑
f∈Fq

∑
h∈Fq

ynf q + bfnqh + pnf q (3.31)

The first line of objective function (3.31) represents the latency gap of LL SFC multiplied by Ω. The second
line is the sum of the BE SFC latency plus the number of non-deployed BE SFC multiplied by (1− Ω). The
constraint we need to modify from our initial model is that which forces all SFC to be deployed, so that the
model only forces LL SFC as provided in Eq. (3.32).

rq ∗ clq ≤ 0 ∀q ∈ Q (3.32)

3.5 Mathematical Model Evaluation

In this section, we present and analyse the evaluation results of our initial model of micro-services placement and
chaining and we compare it with concurrent approaches from the literature. We also present the evaluation results
of our three cohabitation strategies for LL and BE SFC.

3.5.1 Implementation

In order to validate our model and its performance under various conditions, we have implemented it into CPLEX
v20.1.0. The C++ code is 1135 lines long and available at: https://www.mosaico-project.org/outcomes for
reproducibility. The correctness checking has consisted in verifying the following bias: (1) absence of circuits, (2)
deployment of all micro-services related to each request for the initial version of our model, (3) respect of the ordering
between micro-services, (4) respect of memory resource consumption, (5) correctness of latency computation, and
finally (6) correctness of parallelism and mutualization in relation to the mutualization and parallelism tables. All
experiments were performed on an 11th gen. Intel Core i7-1165g7@2.80GHz 1.69GHz computer with 16GB of RAM
and Windows 10 Prof. Educ. as the underlying operating system.

3.5.2 Evaluation Scenarios

We have considered two distinct scenarios whose purpose is to evaluate the performance of (1) our initial orches-
tration model for LL SFC leveraging micro-services and (2) the different cohabitation strategies of LL SFC with
BE ones. All the parameters we considered are summarized in Table 4.2 and motivated subsequently. One can
notice that our model considers both internal and external parallelism for the placement of micro-services. However,
internal parallelism has been the sole allowed to collect all the results we present here, in order to fit with the most
plausible deployment of technology to date.

1. Placement and Chaining Strategies

Our evaluation scenario aims at (1) understanding the performance of our initial model for the placement
and chaining of LL SFC composed of micro-services in realistic situations and (2) comparing it with current
competitors. In particular, we considered the classes of approaches acknowledged in the literature, namely:
(a) Monolithic VNF placement (Mono) which is similar to the models developed in [4, 5]; (b) Micro-services
placement with neither mutualization nor parallelization enhancements (Micro) which is similar to approaches
presented in [26, 27]; (c) Micro-services placement with mutualization enhancement (MicroM ) which is similar
to the models developed in [32, 33], and finally (d) Micro-services placement with both mutualization and
parallelization enhancements (MicroMP); the latter standing for our model.
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Figure 3.3: Histogram of the different successful measurements featuring the performance of our model (MicroMP)
against three competitors (Mono, Micro and MicroM ). (a) Gap of latency between the SFC requirement and that
computed by the placement algorithm; (b) Number of nodes required to place the requested SFC; and (c) Number
of links required to place the requested SFC, according to (from left to right sub-figures): The number of micro-
services, number of SFC, number of nodes and the extra allocated memory resources. Each result is the average of
eight repetitions bounded with 95% confidence intervals.

Criteria Range or value
Topology DFN-Verein European Telco
VNF Firewall, NAT, Traffic monitor, IPS

Micro-services

Read (Rd), Header Classifier (HC), Modifier (Md), Alert
(Al), Drop (Dp), Check IP Header (CIH), HTTP Classifier
(HC), Count URL (CU), Payload Classifier (PC), Output
(Out)

Link latency 1ms
Micro-services Proc. latency 1ms
VNF Proc. latency 4ms
SFC length 5-14 micro-services
Node capacity 3-10 instances of micro-services
Strategy Placement and chaining LL and BE SFC cohabitation
#SFC 2-5 3-8
SFC latency 5-10ms 10-15ms
#Nodes 4-10 4

Table 3.4: Evaluation parameters
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The implemented topology, extracted from SNDlib1 library, is that of the DFN-Verein European telco. We
have partitioned it by selecting only some Point of Presence (PoP) for a given region. Then, each region has
been split into two layers: one node acting as a regional PoP connected to other regional PoPs according to
the telco topology, but also acting as an aggregation point for a few local nodes connected to it through a
regional loop forming a ring sub-topology. The different SFC we consider are the reflect of those that have
been studied in the dedicated literature [34, 11] which are composed of NF (Firewall, NAT, Traffic monitor
and IPS) whose decomposition into micro-services is acknowledged. As the core benefits of micro-services,
we have considered the mutualization and parallelization tables illustrated in Table 3.5, as defined in [32]
and [20], where a ”X” in a cell means that the related row and column micro-services can be mutualized or
parallelized, respectively. Finally, regarding the varying parameters of our experiments, we have deliberately
chosen to limit the computation time, which may be very long in case of exact-resolution, to a realistic order
of magnitude to respect what the usage of such a placement algorithm in a real maintenance process of a
virtual telco infrastructure could be. As such, the computation time of each experiment has been limited to
600s and, given this limit, the computable instances of placement cover the scales provided in Table 4.2 for the
number of nodes, SFC numbers, SFC lengths and nodes capacities. Overall, the results exposed subsequently
required more than 30 hours of computation to encompass all cases. Finally, the prescribed latency for SFC
ranges from 5 to 10ms.

2. Cohabitation Strategies
Our second scenario aims at analysing the cohabitation of LL and BE SFC deployed under the MicroMP
approach. Consequently, we reduced the size of the infrastructure as well as that of the SFC in order to obtain
the final optimal results of the solver that would allow us to fairly analyse the three cohabitation strategies
with no bias due to uncompleted computations. This clearly differs from the first evaluation scenario where
the calculation time was limited to 600s. The infrastructure is composed of four interconnected N-PoPs
considered as regional nodes. The SFC are composed of one or two NFs (Firewall, Traffic monitor and IPS).
Regarding the SFC latencies, they are less tight, varying from 10-15ms as opposed to 5-10ms for the first
evaluation, thus better reflecting the needs of current LL services.

3.5.3 Analysis of the Placement and Chaining Results

The different metrics we measure in our performance evaluation campaign are commonly found in the literature
related to low latency SFC orchestration [luizelli15B , 4, 5, 12]. They aim at first considering the overall latency of
service chains as a prerequisite and then the resource consumption to instantiate SFC over the telco infrastructure.
More precisely, this stands for (1) the sum of the differences between the latency required by each SFC and the
effective latency after deployment, as depicted in first row of Figure 3.3; (2) the number of nodes activated for
the deployment of all the SFC, an activated node being a node on which at least one micro-service is instantiated,
as depicted in second row of Figure 3.3; and (3) the number of links activated for the deployment of all SFC, as
depicted in third row of Figure 3.3.

1. Latency Benefit

The first row of Figure 3.3 shows that MicroMP performs better in terms of latency gap in the different
configurations under test. Moreover, this latency gain does not require a higher consumption of resources. We
also notice that the more the system increases in size and load, the greater the benefit of MicroMP is. The
reason is that the more micro-services there are, the more chances of parallelism and mutualization there are,
these two enhancements allowing the actual latency reduction. One can also see that Micro is the approach
with the largest latency gap for all configurations. This is due to its basic decomposition into micro-services
which generates a latency overhead since there are more entities to deploy. This confirms again that the
decomposition into micro-services is relevant in terms of latency gain only when using mutualization and
parallelism enhancements. One can also see from the last figure of the first row, that bringing more available
resources does not induce much gain in latency. The three configurations +80%, +50% and +20% are indeed
almost equivalent regarding that metric.

2. Usage of Infrastructure Resources

The second and third rows of Figure 3.3 represent the nodes and links usage of the four approaches according
to the different configurations. One can see that the usage of resources is more important when switching
to the micro-services approach and this for all the configurations. The reason is again that with the micro-
services approach, more entities have to be deployed, a VNF being composed of four micro-services on average

1Survivable fixed telecommunication Network Design – http://sndlib.zib.de/
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Rd HC Md Al Dp CIH HC CU PC Out
Rd x
HC x x x x x
Md x x x x x
Al x x x x
Dp x x x x
CIH x x x x
HC x
CU x x x x
PC x
Out x

Rd HC Md Al Dp CIH HC CU PC Out
Rd x x
HC x x x x x x x x x x
Md x x x x x x x x
Al x x x x x x x x x
Dp x x x x x x x
CIH x x x x
HC x x x x x x x
CU x x x x x x x x x
PC x x x x x x x
Out x x

Table 3.5: Parallelism (left) and mutualization (right) tables as defined in [32] and [20]

[32]. Nevertheless, mutualization manages to reduce the consumption of resources by reducing the number
of micro-services to be deployed, thus exhibiting a consumption equivalent to that of Mono. Moreover,
parallelism forces some of the micro-services to be deployed on the same node, thus bringing a slight gain for
MicroMP as compared to MicroM and which, in some cases, even exceeds Mono.

3. Deployment Agility

The third important aspect to notice concerns the deployment agility. Indeed, it can be seen that for some
instances and under some configurations (#Micro-services = 5 and #SFC = 2), the model cannot find a
solution for Mono, despite a sufficient amount of infrastructure resources for their deployment. Indeed, the
breakdown into micro-services allows for better agility as compared to Mono because the components are
lighter and memory space management is therefore easier to achieve.

4. Number of Accepted SFC The first row of Figure

3.3 indicates that MicroMP is the approach which better minimizes the latency gap for the set of SFC it has
to place and chain. However, it does not indicate how this latency gap is distributed among the different SFC
which would be relevant to understand the fairness of the model between SFC. To that aim, we measured
the number of latency compliant SFC in a configuration where the prescribed latency of SFC is relaxed to
10-15ms. The obtained results are summarised in Figure 3.4 which, given our computation time limit, provides
an optimality gap of 0 for Mono, [2-33%] for Micro, [0-20%] for MicroM and MicroMP. It clearly exhibits that
the number of SFC respecting the prescribed latency is the highest for MicroMP, Mono and MicroM having
a lower performance and Micro being the worst, thus confirming the fair behavior of our model regarding the
latency compliance of SFC.

5. Analysis of Computation Features

Table 3.7 summarises the average computation features of CPLEX for the different instances. Each instance
represents a configuration setup with the values presented in Table 4.2, and it has been repeated eight times
with different SFC to bring some randomness. Regarding the computation time, limited to 600s, we notice
that for Mono, the optimal solutions were found much earlier (1,5 seconds on average) contrary to Micro for
which the resolution time is over our limit for almost all instances. In a similar way, the gap with respect to
the optimal solution of Mono is zero while that of Micro is around 45%. This indicates that the solutions
obtained for Micro can be improved if we allowed more computation time. Nevertheless, with such a limited
computation time, Micro is penalized. By contrast, regarding MicroM and MicroMP, the computation time
is below the limit for more than 55% of the cases. In comparison to Mono, this reveals two insights: (1) with
MicroM and MicroMP the obtained solutions are not necessarily optimal and, in spite of that, they are better
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than the optimal solutions of Mono. This means that with more computing time, one could have even better
solutions for MicroM and MicroMP ; (2) the switch to MicroM and MicroMP requires more computing time
due to the complexity of the approach, but less than Micro since there are fewer micro-services to deploy,
thus demonstrating the reasonable cost of these approaches.
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3.5.4 Evaluating the Impact of Mutualization and Parallelization Rate on Model
Performance

Since mutualization and parallelization are the cornerstone which makes MicroMP outperforming its competitors
with the setup of Table 3.5, we have eventually restricted our study to this sole approach and analysed the impact
of mutualization and parallelization rates on the performance of the model. To accomplish this, we have established
five levels of micro-services mutualization and parallelization, allowing 0%, 25%, 50%, 75%, and 100% of possible
mutualization/parallelization cases, represented by five distinct related tables. For each level, we evaluated the
deployment of five SFC consisting of 14 micro-services, with a required latency of 7 ms on a network infrastructure
composed of 7 nodes. The results are summarized in Table 3.6.

1. Analysis of mutualization impact

Our analysis shows that as the mutualization rate increases, the latency gap obviously decreases. Transitioning
from 0% to 100%, mutualization reduces the latency gap from 5.06 ms to 3.48 ms, illustrating the latency
optimization through micro-services mutualization and consequently shorter SFC. The memory usage follows
a similar trend, declining from 84% to 65% with an increased mutualization, due to shorter SFC and fewer
micro-services to deploy. Regarding the number of links and nodes used, we observe that they remain constant
across different mutualization rates, with 8 links and 6 nodes utilized in each case. This observation can be
explained by two factors: first, the relatively small scenario size, which does not offer the possibility of a
large reduction of the path; and second, the MILP model’s formulation, which aims to minimize the latency
gap but does not explicitly focus on reducing the number of links and nodes used. In this evaluation, we
also sought to measure the number of parallelizations, finding that the number of parallelizations decreases
as mutualization increases. This outcome may appear somewhat contradictory, as both mutualization and
parallelism share the common goal of reducing overall latency. However, we observe that the reduction of
latency remains important even when increasing mutualization induces a decrease in parallelism. Actually,
less micro-services in total impacts the possibilities of parallelizing, but it appears to be still better than less
mutualization.

In conclusion, the analysis of Table 3.6 demonstrates that mutualization has a positive impact on the latency
gap, computation time, and resource usage. Although the number of micro-services functioning in parallel
decreases, the advantages of mutualization out-weight this loss, resulting in overall performance improvements.

2. Analysis of parallelization impact

Our analysis of the impact of parallelization on the model reveals that a decrease in latency is observed as
the parallelization rate increases, while the memory usage remains constant at 82%. This result is expected
because memory usage does not directly depend on the parallelization rate but rather on the mutualization,
which reduces the number of deployed micro-services. As for the number of links and nodes used, we observe
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Mut. rate Gap Mem. used #Links #Nodes #Par.

0% 5,06 84% 8 6 9
25% 5,05 82% 8 6 8
50% 4,51 80% 8 6 8
75% 4,09 73% 8 6 6
100% 3,48 65% 8 6 4

Par. ratea Gap Mem. used #Links #Nodes #Par.

0% 7.23 82% 11 7 0
25% 7.14 82% 11 7 2
50% 6.74 82% 8 6 4
75% 6.21 82% 8 6 5
100% 5.01 82% 8 6 9

Table 3.6: Impact evaluation of the mutualization and parallelization rates on model performance, with Mut.
rate(%): Mutualization rate, Par. rate(%): Parallelization rate, Gap(ms): Latency gap, Mem. used(%): Rate of
memory used, #Links/Nodes: Number of used links/nodes, #Par.: Number of parallelizations

that it decreases as the parallelization rate increases. Specifically, the number of links decreases from 11 links
for 0% parallelization rate to 8 for 50% parallelization rate and then remains constant at 8 for subsequent
parallelization rates. Similarly, but to a lower degree, the number of nodes decreases from 7 activated node
for 0% parallelization rate to only 6 for higher parallelization rates. This decrease is justified by the fact that
internal parallelization forces our MILP to place micro-services in close proximity, which reduces the use of
links and nodes. Finally, we observe that the number of parallelizations increases as the parallelization rate
increases, from 0 micro-service functioning in parallel for 0% parallelization rate to 9 for 100% parallelization
rate. This result seems obviously but it reveals that our model is able to fully exploit the parallelization
possibilities offered by the table which is not that trivial since under some configurations one may have
expected an under-utilization of this latency reduction means. In conclusion, the analysis of the table reveals
that parallelization of micro-services has a positive impact on latency and resource utilization while reducing
the complexity of the system.

Finally, we studied the impact of mutualization and parallelization rates on the solver execution time. Figure
3.5 shows the variation of execution time as a function of the parallelization rate (in red) and the mutual-
ization rate (in blue). We observe a linear decrease (between 0-50% and 75-100%) in execution time as the
mutualization rate increases, but an increase in execution time as the parallelization rate increases, but with
a lesser degree than mutualization. This demonstrates that mutualization leads to a significant improvement
in execution time by reducing the number of deployed micro-services, while parallelization, when increasing
its rate, increases the number of possible placement combinations, which lead to longer execution times.

3.5.5 Analysis of the Cohabitation Strategies Results

As a second evaluation step of our overall approach, we have quantified and analysed the differences induced by the
three strategies we have selected to guide the cohabitation between BE and LL SFC. We have especially measured
for each strategy the number of deployed LL and BE SFC, the LL SFC latency compliance rate and the total BE
SFC latency as a function of Ω. Table 3.8 summarises the results we have collected and we analyze subsequently.

1. Comparison of Deployment Results

The first relevant outcome revealed by our evaluation in Table 3.8 is the strict equality of the results we
collected for the Equitable and LatRes strategies, although their respective objective function and constraints
are different. For these two strategies, the number of deployed LL SFC increases with Ω and inversely for
the number of deployed BE SFC. This is a straightforward result which assesses the actual impact of Ω as a
priority parameter for one class over the other. An equitable deployment between the BE and the LL SFC
can set a value between 0.4 and 0.6, more priority to the BE with a value between 0 and 0.4 and finally, more
priority to the LL with a value between 0.6 and 1, the two values Ω = {0,1} being meaningless since they
completely prevent the deployment of one class of service. Then, one can notice that the latency compliance
of LL SFC of the Equitable strategy is always 100% even if not constrained, contrary to the LatRes strategy
where strict compliance of latency is mandatory for LL SFC. This indicates that deploying more or less BE
SFC does not impact the latency of LL SFC because the deployment solution computed by our model, if
found, always leads to the optimal latency which respects the prescribed one. This assessment holds for all
our scenarios but it may fail if the infrastructure setup does not offer a deployment solution respecting the
prescribed latency in LL SFC. This left aside, this observation is the core reason which explains the strict
equivalence of the first two strategies.

D3.1: Optimisation of Micro-services Placement and Chaining for Low Latency Services



MOSAICO Project 20/36

Mono Micro MicroM MicroMP
I Obj Dur Gap Obj Dur Gap Obj Dur Gap Obj Dur Gap
1 - - - 19 600 9 19 600 8 18 506 3
2 13 4 0 15 600 53 8 600 27 6 575 18
3 5 4 0 19 600 47 2 584 17 1 111 2
4 - - - 12 600 41 6 4 15 5 364 6
5 12 3 0 15 600 53 8 600 27 6 599 18
6 19 2 0 27 600 35 16 600 47 12 600 38
7 14 1 0 16 526 42 7 600 40 5 600 3
8 13 1 0 15 600 48 8 600 30 6 597 1
9 4 1 0 11 600 47 3 600 19 1 395 0
10 13 3 0 14 600 51 8 600 28 6 2 1
11 12 2 0 15 600 52 8 600 27 6 600 2
12 15 4 0 16 600 44 9 600 32 7 600 23

Table 3.7: Features of the different model computations, with I: Instance, Obj (ms): Objective function, Dur (s):
Computation duration, Gap (%): Optimality gap.

Equitable & LatRes strategies LLDep strategy
Ω LL BE LL BE lat LL BE LL BE lat

comp avg comp avg

0 0 3 0% 7,33 4 1 100% 6
0,2 2 3 100% 7,33 4 1 100% 6
0,4 3 2 100% 7 4 1 100% 6
0,6 4 1 100% 6 4 1 100% 6
0,8 4 1 100% 6 4 1 100% 6
1 4 0 100% - 4 0 100% -

Table 3.8: Cohabitation strategies results, with LL: number of deployed LL SFC, BE: number of deployed BE SFC,
LL comp (%): rate of LL compliant with the prescribed latency, BE lat avg (ms): BE latency average
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The LLDep strategy confirms that the deployment of BE SFC does not impact the latency of LL SFC, despite
the variation of Ω which leads to an identical number of deployed BE SFC. Given that the LLDep strategy
requires a strict deployment with a minimization of the latency gap for LL SFC, the results indicate that the
latency does not vary either for BE or LL SFC even with the variation of Ω, thus demonstrating a relevant
property of our model regarding the latency respect: when an LL SFC is deployed, this is achieved in an
optimal way and the deployment of more or less BE has no impact on its latency.

2. Resolution Time Analysis

To further assess to what extent the Equitable and LatRes strategies are equivalent, we compared the resolution
time they required, since in spite of the equality of their numerical results, the model does not generate them
in the same way. In the Equitable strategy, the model tries to minimise the latency gap, whereas in the
LatRes one, it directly tries to find a solution that allows the prescribed latency to be respected. Figure 3.6
represents the computation time of our model for the two strategies as a function of Ω. It shows that the
computation time is equivalent and relatively small for the extreme values of Ω and is significantly larger
when the values of Ω are in the ]0.2, 0.6[ range. In this latter range, the model requires more computation as
it attempts to find an equitable solution for the two SFC classes. Besides, Figure 3.4 shows that the Equitable
strategy requires substantially more computational time than the LatRes one, from 4 to 10 times at worst.
Although their results are equivalent, the model tries to minimise the latency gap on the Equitable strategy
which consumes more time whereas it tries to directly find the solution that respects the prescribed time on
the LatRes one, which is less costly in terms of computational time. It would be tempting to conclude that
the LatRes strategy is more relevant because it gives the same results as the Equitable one and in less time,
however if the infrastructure is restricted and there is no solution that allows the latency of deployed LL SFC
to be respected, the LatRes strategy will not produce any solution whereas the Equitable one will produce a
solution with an optimal latency of LL SFC even if the LL SFC do not respect the prescribed one.
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Chapter 4

Heuristic approach

In this section, we present the micro-services placement and chaining problem we tackle as well as the dedicated
heuristic method we propose. The latter aims to (1) place and chain the micro-services and (2) manage an adaptive
parallelization while (3) maximizing the number of SFC meeting the prescribed latency and (4) optimizing load
balancing. To reach these objectives, our lightweight heuristic integrates several optimization techniques, exploiting
the intrinsic characteristics of micro-services, that are introduced subsequently in a step-by-step approach.

4.1 Problem Statement

The micro-services placement and routing problem we investigate is defined by a network graph G = (N , L), where
N represents a set of nodes n, characterized by a memory capacity Mn. L represents a set of links between two
nodes ni, nj ∈ N characterized by a latency link δninj

. Q is a set of SFC requests, with each request, q ∈ Q,
characterized by a source and destination represented respectively by sq, dq ∈ N , a required latency rlq and a set
of micro-services m ∈ M , where M is the set of all types of micro-services that an edge flow must traverse. The
objective of this problem is to:

• Place the micro-services for each SFC;

• Chain micro-services together.

Subject to :

• Memory capacity constraints on the nodes;

• Micro-services forwarding and execution latency constraints;

• Micro-services execution order constraints;

• Parallelism execution constraints.

4.2 Algorithm Overview

The heuristic, accepting pre-processed SFC set Q and network infrastructure G as inputs, generates a placement
solution for all SFC within the infrastructure capacity. Pre-processing involves mutualizing and identifying par-
allelizable micro-services, as detailed in our previous work [44]. Composed of three key algorithms, the heuristic
utilizes EppRep() and NeShPat() for k shortest path calculation, and SFCDeploymentAlgorithm() for a load-
balanced SFC deployment, which itself employs ServicesP lacementAlgorithm() to deploy micro-services while
managing parallelization.

This section elaborates the heuristic primary steps, special attributes, shortest path calculation, parallel place-
ment and chaining procedures, and it introduces an online learning approach enhancing the heuristic performance.
Table 4.1 provides a comprehensive overview of all parameters and variables we consider in the following.
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Functions Definition
EppRep(sq, dq, G) Gives Eppstein representation for paths from Sq to dq in G
NeShPa(ERq) Finds next shortest path using Eppstein rep. ERq

AvaiSpace(p) Computes available memory on a path p
P lace(m,n) Assigns micro-service m to node n
Para(m1,m2) Checks if micro-services m1, m2 can run in parallel
Cont(n,m) Checks if micro-service m is on node n
IsCritical(q) Checks if SFC q length is less than its rlq
Move(m,n) Migrates micro-service m to node n
TwiceDecr(q) Checks if SFC q score decreased twice consecutively
Sets Definition
q ∈ Q Set of SFC
m ∈M Set of micro-services
m ∈ PMmn

Set of micro-services operating in parallel to mn

Parameters Definition
G Network infrastructure for SFC deployment
ERq Eppstein representation for SFC q
NbIt Number of iterations for the online learning process
∆s Constant to adjust SFC q score
N Factor to amplify SFC q score deterioration
sq Source node of SFC q
dq Destination node of SFC q
Variables Definition
spq Shortest path for SFC q
as Available space
mr Space left on p post q deployment
mpn Space left on p post q deployment per node
rm Residual space on p post deployment
can Memory capacity of node n
m− Precedent of micro-service m
scq SFC q score
rlq Required Latency of SFC q
elq Effective latency of SFC q

Table 4.1: Functions, sets, variables, and parameters considered in our heuristic method
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4.2.1 Main steps of the heuristic

As shown in Algorithm 1, to optimise the deployment of a set of SFC, our heuristic starts by ordering the SFC in
ascending order of the margin between their required latency and the SFC length (line 1). Indeed, the smaller the
latency gap, the more critical the SFC. Next, for each SFC q ∈ Q (loop on line 2–11), the method executes two first
operations: it computes a modified Eppstein representation which enables the calculation of the k loop-free shortest
paths (line 3) and sets the flag depq to false indicating that the SFC remains undeployed (line 4). Then, while
SFC q is not deployed and a kth shortest path is available (line 5), the heuristic determines the kth shortest path
based on the computed Eppstein representation (line 6). Subsequently, it verifies whether the memory capacity of
the path is adequate for the deployment of SFC q (line 7). If the memory capacity is found to be sufficient, the
heuristic attempts the deployment of SFC q by invoking SFCDeploymentAlgorithm() with the SFC q and shortest
path spq parameters (line 8).

Algorithm 1 Overall heuristic method for micro-service SFC placement and chaining

Input: Set of SFC Q, infrastructure G
Output: Placement and chaining solution for all SFC

1: Order SFC according to latency gap value
2: for all SFC q ∈ Q do
3: ERq ← EppRep(sq, dq, G)
4: depq ← false
5: while ¬depq and NeShPa(ERq).exist() do
6: spq ← NeShPa(ERq)
7: if Capacity(SPq) ≤ Length(q) then
8: depq ← SFCDeploymentAlgorithm(q, spq)
9: end if

10: end while
11: end for

4.2.2 Shortest Path Computation

In a micro-service SFC placement and chaining scenario, determining only one shortest path per SFC may be
insufficient due to bounded node memory. This necessitates the identification of the k shortest paths where, if the
(k − 1)th path lacks sufficient memory capacity, we deploy the SFC on the kth path, maintaining flexibility and
robustness. To optimally address this, we leverage the Eppstein algorithm [19], an efficient solution for graphs
without negative loops, which fits with our context where edge latency cannot be negative. Eppstein algorithm
complexity is O(m+n log(n)+ k log(k)), with m, n, and k representing the number of edges, nodes, and calculated
paths, respectively. The algorithm operates according to the following steps: (1) it starts with the Dijkstra’s
algorithm calculating the shortest paths between each node and destination; (2) it forms a unique graph, which
allows a direct transit to the subsequent node, or a detour to an auxiliary node, with latency variation; (3) it
outputs the shortest path, while empty auxiliary node sets represent direct paths. For each node on the shortest
path, (4) it forms sets of shortest paths and adds feasible paths to a heap. Finally, (5) it extracts the minimum-cost
set from the heap, computes their shortest path, and repeats until all paths are explored.

When graphs contain positive loops, shortest paths can be infinite due to possible loop traversals on each path
calculation. Since repeated node traversal does not affect the path’s micro-service deployment capacity, we need
loop-free paths. Consequently, we modified the Eppstein algorithm at two points to exclusively produce k shortest
loop-free paths: one at step (2) to remove edges if the auxiliary node creates a loop with the original path, and at step
(3) to eliminate looping paths. These modifications ensure paths are loop-free, maximizing Eppstein algorithm’s
efficiency in our context. In our method, the EppRep() function oversees the operation of the modified steps (1-2),
while the NeShPa() function manages the execution of the modified steps (3-5).

4.2.3 Load Balanced SFC Deployment

The deployment of SFC produced by Algorithm 2 consists in optimising the placement of micro-services to maximise
the number of SFC deployed, while respecting the prescribed latency and balancing the load on the network nodes.

Our load balancing strategy, inspired by the Waterfilling algorithm [45], aims to fairly distribute remaining
space for post-SFC deployment on nodes. However, two challenges arise: (1) memory allocation indivisibility, which
necessitates a strategy for managing integer division and leftover fractions; (2) the potential resource distribution
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imbalance due to micro-services parallelization, which demands an integrated approach for system balance mainte-
nance. To achieve this balanced deployment, we propose to use four metrics: available space as ; the margin mr ;
the margin per node mpn and the residual margin (rm) which are described in Table 4.1.

The proposed procedure, described in Algorithm 2, employs an iterative method to traverse two lists: the
list of micro-services associated with SFC q, indexed by m, and the list of nodes within the specified path p,
indexed by n. Initially, the algorithm considers the first micro-service and node (line 1 and 2). While any SFC
remains undeployed and nodes persist within the path, the heuristic executes the ensuing steps (line 7-16). First,
it checks whether the current node can host the current micro-service (line 7). This assessment entails verifying
if the available space surpasses the mpn metric. If the node proves to be sufficient, the algorithm invokes the
ServicesP lacementAlgorithm() (step 10) to deploy the micro-service m onto node n. Subsequently, if the de-
ployment is successful (line 10), it transits to the next micro-service while maintaining its position at the current
node (step 11). Conversely, if the node cannot host the micro-service, the algorithm progresses to the next node
without transitioning to the next micro-service (step 14). By implementing this procedure, the algorithm facilitates
balanced micro-service deployment on path p by evenly distributing the remaining space among the nodes. One
can notice that rm will be used by algorithm ServicesP lacementAlgorithm().

Algorithm 2 SFC Deployment Algorithm

Inputs: SFC q, path p
Output: Deployment of SFC q

1: int n ← 0 // index for iterating over path p
2: int m ← 0 // index for iterating over SFC q
3: int as ← AvaiSpace(p)
4: int mr ← as - Length(q)
5: int mpn ← Quotient(marge/Length(p))
6: int rm ← Remainder(margin/Length(p))
7: while m ≤ Length(q) and n ≤ Length(p) do
8: if can > mpn then
9: depq ← µServicesP lacementAlgorithm(q, p, m, n)

10: if depq then
11: m ← m + 1
12: end if
13: else
14: n ← n + 1
15: end if
16: end while

4.2.4 Micro-services Placement and Internal Parallelisation

To leverage the internal parallelization of micro-services for latency reduction, we propose a strategy, described in
Algorithm 3, that begins by placing a micro-service m on node n (line 1), then assess whether the preceding one
m− can feasibly operate in parallel with m. If so and if not already operating in parallel (line 3), the algorithm
checks if m−1 is deployed on n (line 4) and if so, it integrates m−1 to the parallelizable set PMm (line 5). If m−1 is
not deployed on n, it verifies if (i) there is enough residual margin rm that could be used to avoid unbalancing the
deployment too much, or (ii) if SFC q is critical, meaning that the parallelization is crucial to satisfy the latency
constraint. Then the algorithm checks also if path p has enough capacity to move m− to node n (line 6). Indeed,
the parallelizing m with m−1 involves the migration to n which leads to imbalances in the load deployment. In
cases where the conditions are met, the algorithm moves m− to n (line 7) and integrates m− to PMm (line 8). In
the other case when m is parallelizable with m−1 and the latter is already operating in parallel with another(s)
micro-service(s), the algorithm checks if all micro-services within PMm−1 are capable of running in parallel with
m (line 10). If so, and m− has already been deployed on n (line 11), the algorithm integrates m into the existing
group PMm−1 of parallelizable micro-services of m− (line 12). If m− is not placed on the same node (line 13),
the algorithm performs the same checks as line 6, but with the set of micro-services operating in parallel with m−,
contained in PMm− . In cases where the conditions are met, the algorithm moves them to n including m− (line 16)
and integrates m to PMm− (line 18).
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Algorithm 3 µServices Placement Algorithm

Inputs: SFC q, path p, micro-services m, node n
Output: optimized deployment of micro-service m

1: Place(m, n)
2: if Para(m, m−) then
3: if PMm−1 = ∅ then
4: if Contains(n,m−) then
5: PMm ← PMm ∪ m−1

6: else if rm > 0 or (IsCritical(q) and (cap - Length(q)) > 0 then
7: Move(m−,n)
8: PMm ← PMm ∪ m−1

9: end if
10: else if ∀ µi ∈ PMm−1 , Para(m, µi) then
11: if Contains(n,m−) then
12: PMm−1 ← PMm−1 ∪ m
13: else
14: if rm > Length(PMm−) or (IsCritical(q) and (cap - Length(q)) > Length(PMm−) then
15: for all µj ∈ PMm− do
16: Move(µj ,n)
17: end for
18: PMm−1 ← PMm−1 ∪ m
19: end if
20: end if
21: end if
22: end if

4.3 Ordering the SFC Processing

A notable drawback of heuristic methods over the exact one relies in their sequential SFC deployment, which does
not optimize the entire SFC set concurrently as in mathematical models. This reveals that the processing order has
significant impact on the solution performance. Consequently, we employed an online learning process to optimally
order the SFC processing, as described in Algorithm 4.

The heuristic starts by uniformly assigning for each SFC in Q a consistent score ”s” and it computes a modified
Eppstein Representation (line 1-2). Then, at the start of each iteration it ∈ NbIt, whose upper bound has been
empirically assessed to half of the number of SFC per instance (line 5), the heuristic deploys them in ascending
order of scores unlike latency gap value as detailed in Section 1 (line 6). After deployment, it checks each SFC’s
latency compliance (line 8). If an SFC meets latency requirements, its score is increased, thus lowering its priority
(line 9). If it does not, its score is reduced, thus raising its priority (line 11). Over multiple iterations, the solution
progressively improves. However, if an SFC consistently fails to meet latency requirements despite its priority,
its score is intentionally increased after two consecutive decreases, downgrading it (line 12-13). This ensures the
heuristic does not prioritize SFC that persistently violate latency specifications.

4.4 Evalution

To assess the performance of our heuristic method under diverse scenarios, we implemented it in C++. The imple-
mentation consists of 2300 lines of code accessible at: https://www.mosaico-project.org/outcomes for replication
purposes. To validate our implementation, we performed comprehensive checks, ensuring that (1) there are no
circuits, (2) all micro-services related to each request are deployed, (3) the sequence of micro-services is respected,
(4) memory resource consumption is respected, (5) latency computation is accurate, and (6) parallelism and mutu-
alization are correctly implemented in accordance with their respective tables. All our experiments were conducted
on an 11th generation Intel Core i7-1165g7@2.80GHz 1.69GHz computer, with 16GB of RAM and operating on
Windows 10 Professional Education.

4.4.1 Evaluation Scenarios

Our performance evaluation scenarios aims at (1) understanding the performance of our model in realistic situations
and (2) comparing it with the optimal solution (CPLEX) generated with the model we proposed in [44]. We also
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Algorithm 4 Online learning approach for micro-service SFC placement and chaining

Inputs: set of SFC, infrastructure
Output: deployment of all SFC

1: for all SFC q ∈ Q do
2: scq ← s // assigns identical score to all SFC
3: ERq ← EppRep(sq, dq, G)
4: end for
5: while it ≤ NbIt do
6: // Deploy all SFC as per Heuristic 1 except that the ordering is based on the s score instead of the latency

gap value
7: for all SFC q ∈ Q do
8: if elq ≤ rlq then
9: scq ← scq +∆s // score downgrading

10: else
11: scq ← scq −∆s // score improvement
12: if Rank(q) = 1 and TwiceDecr(q) then
13: scq ← scq +N ∗∆s // major deterioration score
14: end if
15: end if
16: end for
17: it← it+ 1
18: end while

Parameter Range or value
Topology DFN-Verein European Telco
VNF Firewall, NAT, Traffic monitor, IPS
Micro-services Read (Rd), Header Classifier (HC), Modifier (Md), Alert (Al),

Drop (Dp), Check IP Header (CIH), HTTP Classifier (HC),
Count URL (CU), Payload Classifier (PC), Output (Out)

SFC latency 5-10ms according to the SFC
Link latency 1ms
Micro-services proc.
latency

1ms

SFC length 5-14 micro-services
Node capacity 3-10 instances of micro-services
k 10
scq set to the number of SFC in the scenario
∆s 1
N set to the number of SFC in the scenario

Table 4.2: Evaluation parameters
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evaluate the relevance of the different improvements we exposed above, namely: Heuristic without parallelization,
online learning approach and load balancing (H ); Heuristic managing parallelization (H-P); Heuristic managing
parallelization and load balancing (H-PB); (H-PLB) being the last and standing for our selected candidate which
manages online learning approach in addition to the version (H-PB).

All the parameters we considered in our evaluation are summarized in Table 4.2 and motivated subsequently.
The implemented topology, extracted from the SNDlib1 library, is that of the DFN-Verein European telco. We
have partitioned it by selecting only some Point of Presence (PoP) for a given region. Then, each region has
been split into two layers: one node acting as a regional PoP connected to other regional PoP according to the
telco topology, but also acting as an aggregation point for a few local nodes connected to it through a regional
loop forming a ring sub-topology. The different SFC we consider are the reflect of those that can be found in the
dedicated literature[11], each of them being splitable into micro-services. Their split are technically realistic and
derived from the literature [32, 33]. As the core benefits of micro-services, we have considered the mutualization
and parallelization tables illustrated in [20]. The initial number of shortest paths to compute, denoted as k, is set
to 10. In case the algorithm is unable to deploy the SFC on one of these paths, it calculates the next 10. This
process continues until a deployment is possible or no more shortest paths are available. As for scq, it is defined
as the number of instances per scenario. This enables a homogeneous ranking of the SFC. Variable ∆s is set to 1,
which is enough to prioritize one SFC over another. Finally, N is also defined as the number of SFC per scenario.
This definition is crucial to cause a significant deterioration in the ranking when necessary. All the results presented
subsequently are the mean of eight repetitions bounded with 95% confidence intervals.

4.4.2 Result Analysis
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Figure 4.1: Histogram of exceeded SFC latency and average SFC latency under CPLEX and heuristic approaches,
with varying extra memory (left), infrastructure nodes (middle), and SFC per instance (right)

In our evaluation, we use several metrics to assess the heuristic’s performance and its variants. Primary indicators
include the quantity of SFC exceeding the required latency and the mean latency per scenario. We also study the
average optimality gap, representing the heuristic solution deviation from the optimal. We estimate the computation
duration by modifying the number of SFC instances per scenario and comparing the results to the exact approach’s
(CPLEX) computation duration. Additionally, we scrutinize the computation time by adjusting the number
of nodes while keeping the SFC instances constant. Finally, we assess load balancing with the Jain index, an
acknowledged metric in the related literature [46, 47]. It quantifies deployment load balance with an index varying
from 0 (unbalanced) to 1 (balanced).

1. Number of SFC Exceeding Latency

Reviewing all scenarios of Figure 4.1.a highlights that, as expected, the exact CPLEX method outperforms
others, specifically the H approach which lacks optimization and neglects micro-service peculiarities. The

1Survivable fixed telecommunication Network Design – http://sndlib.zib.de/
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Figure 4.2: Jain index for micro-services deployments as a function of (a) the extra allocated memory, (b) number
of nodes and (c) number of SFC

H − P variant shows marked improvement due to effective parallelization during deployment. The load-
balancing version,H−PB, optimizes performance in 6 out of 9 scenarios. The remaining scenarios, constrained
by limited memory infrastructure, maintain performance levels, since the impact of load balancing decreases.
However, when the infrastructure is not overloaded, load balancing distributes available space efficiently across
the network, facilitating SFC deployment on the shortest paths, hence respecting latency. Finally, online
learning approach (H −PBL) enhances the heuristic performance by countering its sequential limitations on
all scenarios.

In terms of metric variation, with more extra memory, the performance slightly improves due to increased
placement and parallelization possibilities. However, when more nodes maintain the same total capacity, the
performance of H − P deteriorates as the possibility of parallelization decreases because of fixed memory
capacities, which means that less space per node is available. Nevertheless the performance increases for
H − PBL thanks to the load balancing approach. Concerning the SFC number variation, we note that the
gap between the exact approach CPLEX and heuristic versions (H) and (H −P ) notably widens when SFC
increases. However, our heuristic (H − PBL) maintains a consistent difference with CPLEX, proving its
robustness regardless the number of scenarios.

2. Average Latency

As depicted in Figure 4.1.b, this analysis reveals a paradoxical behavior. Indeed, although the exact approach
(CPLEX) offers superior performance in terms of the number of SFC exceeding latency as compared to our
heuristic approach, it shows the worst performance in terms of average of the execution times of all latencies.
This phenomenon is explained by the fact that in the exact approach, when an SFC exceeds the latency, the
model does not limit its exceeding value. By contrast, the heuristic optimizes each SFC by trying to minimize
its latency, thereby enabling a more uniform deployment in terms of latency compliance. We also observe an
improvement in the average latency under the H − PBL approach as compared to the H − PB approach
under the scenarios with 10 nodes and the one with 50 SFC, as the benefit of SFC ordering is larger in these
cases.

3. Optimality Gap To refine the performance analysis of the solutions generated by our heuristic method,
we evaluate the optimality gap as summarized in Table 4.3. This metric measures the distance between the
solutions generated by our heuristic and the optimal solution produced by the exact method. Our method
achieves a latency gap of 11%, which is significantly commendable as compared to the literature, where the
latency gap typically ranges between 13% and 14% [48, 49]. Interestingly, each optimization, whether it is
parallelization, online learning, or load balancing, contributes to its own margin of improvement. However,
parallelization reduces the most the optimality gap (over one half), which is due to its strong tied to micro-
services approach.

H H − P H − PB H − PBL
Optimality gap (%) 43 19 17 11

Table 4.3: Optimality gap for different versions of heuristics

4. Computation Time as a Function of SFC Number

Figure 4.3.a illustrates the evolution of computation time according to the SFC number, ranging from 25 to
10,000, considering different versions of our heuristic as well as the exact method CPLEX. For the latter,
the results are limited in range due to the exponential increase in computation time. The evolution of the
computation time follows a logarithmic shape as the size of the instances increases. It is worth noting that the
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Figure 4.3: Computation time (seconds) as a function of the number of (a) SFC and (b) nodes

heuristic approach H −PLB is on average 20,000 times faster than the exact method CPLEX. We can also
observe that two distinct categories of computation time also emerge: the H, H−P and H−PB approaches,
which present a computation time, on average, 40 times faster than the H − PBL approach. This difference
is due to the integration of online learning in H − PBL, which requires multiple deployment iterations to
optimize the deployment order. As for the impact of parallelization in the H − P version and load balancing
in the H −PB version, they seem to have a minimal, if any, impact on the computation time as compared to
the H and H − PL versions, respectively.

5. Computation Time as a Function of Node Number

Figure 4.3.b presents the evolution of the computation time as a function of the infrastructure size, defined by
the number of nodes, from 8 to 1024, with a fixed number of SFC and available space, fixed to and of 30 and
+150% of the number of micro-services, respectively. We observe here a clear increase in computation time
which is due to the modified Eppstein algorithm used for computing the k shortest paths, whose complexity
depends on the number of nodes in the infrastructure. It is worth noting that although this increase is
linked to the size of the infrastructure, our approach outperforms that of the exact method of three orders of
magnitude, being about 20,000 times faster for the scenario involving 128 nodes. Even when we are on very
large infrastructure instances (512 or 1024 nodes) the execution time, roughly a few tens of seconds, proves
to be acceptable for an operational deployment and highly scalable.

6. Load Balancing Quality

Figure 4.2 illustrates the Jain’s fairness index for the two approaches H − P and H − PBL according to the
Extra memory, Nodes number and SFC number. A clear distinction in terms of load balancing is observed
in favor of the H − PBL approach for all scenarios. Nevertheless, we note a convergence of the index in
cases where the scenarios are restricted: (i) when the extra memory is low, and (ii) when the number of SFC
increases. Indeed, in this scenario where the infrastructure is highly constrained, load balancing becomes
a challenging task, especially considering the stringent latency requirements for all SFC. This limits our
algorithm ability to balance, thus prioritizing latency compliance. Finally, as the number of nodes rises,
Jain’s indices of both approaches converge. Indeed, an infrastructure, composed of significantly large node
numbers and a static capacity, can still achieve more balanced deployment without specific techniques.
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Chapter 5

Micro-services SFC Use Cases related
to the MOSAICO Project

As part of the MOSAICO project, several network services have been proposed by project participants. The
architecture chosen for these services is a micro-services architecture. Examples include the Cloud Gaming
session detector, the L4S monitoring service and the L4S security detector micro-services. Based on these
different services, we can setup SFCs leveraging the micro-services approach, responding to a certain need.
In what follows, we propose three different uses cases linked to our projects, by presenting different SFCs.
It should be noticed, however, that some of the micro-services linked to these various SFCs are implemented
using P4 technology, which means that they are placed in a predefined, fixed position on certain network
servers.

5.1 SFC 1: Low Latency Cloud Gaming Forwarding

SFC 1 is a virtual function service chain designed to optimize and enhance the Cloud Gaming (CG) experience.
This SFC integrates two major components: the Cloud Gaming Session Detector and the L4S Micro-Services
Architecture. The Cloud Gaming Session Detector aims to identify and classify real-time gaming traffic to
treat it as a low-latency (LL) service. To achieve this, it is deployed at the edge of the network, an essential
strategy for countering the Bufferbloat phenomenon. The methodology relies on the use of a decision tree
(DT)-based classifier that determines whether a flow is associated with Cloud Gaming. This classification
process relies on 12 features, calculated over a 33 ms time window, which are derived from packet sizes
and intermediate arrival times (IATs). Architecturally, several micro-services are integrated: a ”Probe”
which listens to a specific network interface and calculates the characteristics of each pair of IP addresses,
a ”Load Balancer” which distributes the load among the calculation nodes using a round robin strategy, a
”Classifier DT” which classifies a time window according to the twelve selected characteristics, and finally an
”Aggregator” which associates to each pair of IP addresses its number of time windows labeled ”CG”. On the
other hand, the L4S micro-services architecture aims to redefine traditional L4S architecture by adopting a
micro-services-based approach, offering greater flexibility and ease of upgradability. This architecture includes
a Packet Classifier that assigns packets to the LL or Best Effort (BE) queue, using machine learning methods
to detect LL session behavior. It also integrates a Queuing System that manages the queuing of LL or
BE packets to meet low-latency requirements. The ”AQM Computations” micro-service is responsible for
calculating indicators to determine whether a packet should be transmitted, marked or dropped, with the
possibility of considering and replacing several AQMs as required. Finally, ”Packet Decision” makes the final
decision on whether to transmit, mark or discard packets. SFC 1 is a solution that combines detection and
classification of game traffic with an L4S architecture based on micro-services. This combination optimizes the
Cloud Gaming experience, guaranteeing low latency and efficient traffic management. The modularity offered
by the micro-services approach also enables scalability and adaptability to different scenarios and network
requirements.
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5.2 SFC 2: Securingg Cloud Gaming Traffic

SFC 2 is a solution focused on ensuring optimal traffic management with a particular emphasis on security,
especially for cloud gaming applications. It ensures that traffic not only flows smoothly and efficiently but
is also protected against potential threats. At the start of this chain, the Cloud Gaming Session Detector
plays an essential role in filtering incoming traffic. Based on advanced algorithms, it accurately determines
whether a specific flow is associated with Cloud Gaming. This initial distinction is crucial in ensuring that
relevant flows are treated with the necessary priority, while paving the way for enhanced security measures.
Security is at the heart of SFC 2, and this is where the L4S Security Detector comes in. This component
goes beyond simple traffic management to focus on proactive threat detection. Using advanced machine
learning techniques, it scans traffic to identify abnormal or malicious behavior, ensuring that traffic is not
only managed, but also secured against potential attacks. Finally, L4S Monitoring services ensure continuous
traffic monitoring. By capturing detailed metrics in real time, this component offers a granular view of traffic
behavior, enabling rapid detection of anomalies and providing essential information for real-time adjustments.
In essence, SFC 2 combines traffic management, enhanced security and continuous monitoring to ensure that
cloud gaming applications enjoy a seamless user experience while being protected against emerging threats.

5.3 SFC 3: Optimized Cloud Gaming Traffic Management

SFC 3 is designed as an integrated solution to optimize traffic management, particularly for cloud gaming
applications. It is built around a synergy between traffic classification, management and monitoring to ensure
a smooth, responsive user experience. At the heart of this chain is the Cloud Gaming Session Detector,
which acts as a first line of the micro-service chain by identifying and classifying gaming traffic in real time.
Leveraging a sophisticated decision-tree classifier, it analyzes the intrinsic characteristics of the traffic to
determine its nature. This ability to distinguish gaming traffic from other types of traffic is essential to ensure
that network resources are allocated appropriately. Once traffic has been classified, this function takes over
traffic management using a micro-services-based L4S approach. It breaks down the L4S architecture into
several independent micro-services, including the classifier, the queuing system, AQM calculations and packet
decision. This modularity allows greater flexibility and adaptability to different transport protocols. Finally,
real-time monitoring is provided by L4S monitoring service. This component ensures that traffic behavior
is constantly monitored, providing valuable information that can be used to quickly detect anomalies and
adjust traffic management accordingly. In short, SFC 3 is a holistic solution that aims to ensure that cloud
gaming traffic is handled with the necessary priority and efficiency, while being constantly monitored to ensure
optimum performance.
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Chapter 6

Conclusion

This work has highlighted the crucial importance of optimal placement and micro-service chain management
in the context of modern networks, particularly for low-latency (LL) Service Function Chains (SFCs). Thanks
to a rigorous optimisation modeling and a heuristic approach, we were able to explore the associated challenges
in depth and propose viable solutions. Evaluation scenarios played a key role in validating the performance
of our models under a variety of conditions, reinforcing their relevance and applicability. In addition, the
practical implementation of these concepts, accessible for replication, demonstrated their effectiveness and
robustness. The specific use cases of the MOSAICO project illustrate the relevance and applicability of these
concepts in real-life scenarios.
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