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1. PhD objectives

➢ PhD Title : Characterization, classification and troubleshooting of cloud gaming applications.
➢ University of Lorraine
➢ Start date : 17/11/2021

➢ Motivation: 
➢ Emergence of many low-latency applications (cloud-gaming, tactile internet, metaverse, …) 

with the development of Internet. 
➢ These applications come with stringent network requirements that hinder the quality of user 

sessions, especially on cellular networks.
➢ Crucial for ISP to detect and mitigate the possible anomalies.

➢ Objectives:
➢ Identify, collect and analyze relevant metrics in network traffic, base stations, UEs… to 

characterize those applications in time-varying network conditions.
➢ Use machine/deep learning approaches to identify anomalies in the collected metrics and 

go back to the root causes
➢ Keywords : low-latency, cloud-gaming, AI, troubleshooting
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2. Generation of realistic cellular network conditions

2-1. Motivation :

• How can we conduct controlled experiments on realistic network conditions ?
• The framework Mahimahi developed by MIT researchers.

• Transmission opportunities (txops) files, used by Mahimahi to emulate time-varying capacity
network, are old and not representative of current cellular network capacities (Verizon LTE -
TMobile 2016).
• Current downlink throughput according to [ARCEP] are about 71Mbps while those on the 

txops are about 5-10Mbps.
• We want more recent txops file to perform better evaluations.

• How to generate txops files that can emulate current and realistic cellular network conditions ?
• Use Saturatr tool to make measurements from 4G/5G base station.
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2-2. Protocol for experiments on time-varying capacity networks

Saturator tool [Saturatr] to generate transmission 
opportunities (txops) by saturating link radio. 

Txops Generation

Nb packets per txops = 6

Inter Txops Time = 75 – 48 = 27 

ms

𝑖𝑓 𝑟𝑡𝑡 < 𝑅𝑇𝑇𝑙𝑜𝑤𝑒𝑟 && 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 < 𝑤𝑖𝑛𝑑𝑜𝑤𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑒𝑛 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 + +

𝑖𝑓 𝑟𝑡𝑡 > 𝑅𝑇𝑇𝑢𝑝𝑝𝑒𝑟 && 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 > 𝑤𝑖𝑛𝑑𝑜𝑤𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑒𝑛 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑤𝑖𝑛𝑑𝑜𝑤 −= 20
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2-3. Characteristics of the measured cellular networks condition

Conditions Throughput 
(Mbps)

Location

File 1 220 Orange

File 2 160 Orange

File 3 120 Brélévenez

File 4 80 Brélévenez

File 5 40 Plemeur-
Bodou

File 6 
(Highway)

45 Guingamp -
Lannion

File 1

File 6

Measurements conditions
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3. Data collection of cloud gaming sessions on emulated 4G network 
conditions

• Collect QoS/QoE metrics to 
characterize cloud gaming 
applications over cellular 
network conditions:

• Use of Mahimahi tool
[Mahimahi] for network 
emulation

• Use of WebRTC API that
provides a lot of client-
side metrics through
Chrome desktop client.

• Game sessions with Google 
Stadia on different networks 
emulated conditions.
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4. Evaluation of Unsupervised ML models for Anomaly Detection in 
Cloud-Gaming sessions

➢ Detecting abnormal network behaviors requires experts knowledge.
➢ Impractical due to the increasing network complexity.

➢ Use of Unsupervised ML approaches to bypass the need of labeled data.

➢ Based on the aforementioned metrics collected, we evaluate the performance of 5 
different unsupervised ML for the detection of cloud gaming performance degradation.

➢ Unsupervised ML model assume that the training data is free from anomalies but this is
not the case in real-life scenarios.
➢ We then assess the robustness of unsupervised ML models to data contamination 

and the impact of data splitting strategies on the performance.
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4-1. Methodology

CG time-series dataset

Data Processing Unsupervised ML models

Output

➢ We consider in this work, point anomalies only.

➢ To objectively compare the models with well-known ML performance metrics, 
ground truths are required.

➢ An observation is as a ground-truth anomaly if FPS < 60 or Resolution < 1080p or a 
freeze occurs.
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4-2. Data processing

• Mixed-dataset splitting

X220

X80

X160

X40

X120

Xhighway

Train

Test

Contaminati
on set

50% of normal

50% of normal +
60% of abnormal

40% of abnormal
observations

• High-bitrate splitting:

X220

X80

X160

X40

X120

Xhighway

Train

Test

Normal obs. for train
Abnormal for contamination

Train

Test

Contamination 
set

Contamination 
set
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4-3. Unsupervised ML models

➢ OC-SVM: Support Vector Machines based approach to separate the 
normal data from anomaly data with an hyper-sphere.

➢ Isolation Forest: Performs splits based on features to isolate anomalies 
from normal instances.

➢ PCA: Reconstruction of the data with principal components.

➢ Auto-Encoder (AE): Constitued of an encoder, that learns from inputs a 
low-dimensional representation of data, and a decoder that reconstruct
original data from latent variable.

➢ LSTM-VAE: Combination of LSTM and a VAE (AE with bayesian
inference).

Reconstruction-based
approach that output 
anomaly score for the 
detection.
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4-4. Evaluations & Results

Performance evaluation metrics :

➢ Precision

➢ Recall

➢ F1-Score

➢ AUC

The best models without data contamination are 
the AE and LSTM-VAE. 
For real-life situations, OC-SVM or iForest should
be preferred since they are more robust to data 
contamination. 

The same conclusions for the both data splitting
strategies.



13

Orange Restricted

4-4. Evaluations & Results

The comparison between F1-score and AUC show 
how misleading the AUC score can be when the 
test set is imbalanced.

The training time for OC-SVM is very high 
compared to those of the iForest that has the same
performance with data contamination.
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4-5. Conclusion

➢ Our comparative analysis show that data contamination have a high impact on unsupervised ML 
models.
➢ AE and LSTM-VAE are the best without data contamination.
➢ OC-SVM and iForest are the most robust to data contamination even if OC-SVM has a longer 

training time.

➢ Our evaluation however has some limitations:
➢ The reconstruction-based approach are evaluated with the 3-sigma rule for threshold

selection.
➢ The point-wise anomaly detection is not well-suited for the detection of CG quality

degradation.

➢ In future work we will
➢ Perform additional evaluations with state-of-the-art approaches for anomaly detection
➢ Use sequences of observations instead of point observations to better model an anomaly for 

cloud-gaming sessions.
➢ Study the impact of the threshold for the performance of reconstruction-based models.
➢ Explain the anomalies for root-cause analysis.
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5. Conclusion

➢ A paper about this work on the detection of Cloud Gaming is accepted and will be presented at 
the IEEE CNSM Workshop, HiPNet : 

J. Ky, B. Mathieu, A. Lahmadi, R. Boutaba, “Assessing Unsupervised Machine Learning 
solutions for Anomaly Detection in Cloud Gaming Sessions”, 4th International Workshop 
on High-Precision, Predictable, and Low-Latency Networking (HiPNet), 18th International 
Conference on Network and Service Management (CNSM), Thessaloniki, Greece, 31 
October - 4 November 2022.

➢ The code for the experiments is available at : https://github.com/joelromanky/cg-ano-detect-eval

➢ The data for emulated networks conditions is available as open data at: https://cloud-gaming-
traces.lhs.loria.fr/cellular.html

https://github.com/joelromanky/cg-ano-detect-eval
https://cloud-gaming-traces.lhs.loria.fr/cellular.html
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6. References

• [Mahimahi] : http://mahimahi.mit.edu/
• [Saturatr] : https://github.com/keithw/multisend/blob/master/sender/saturatr.cc
• [ARCEP] : Qualité des services mobiles | Arcep
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A-1. Characterization of 4G txops measured

File 1 File 3 18File 2
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A-1. Characterization of 4G txops measured

File 4 File 5 File 6 19
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A-2. Max downlink throughput on the txops files 

File 4 File 5 File 6 20

File 1 File 2 File 3
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B. Results with the high-bitrate splitting strategy

File 1 File 3 21File 2


